
Scientific Visualization, 2022, volume 14, number 1, pages 41 - 49, DOI: 10.26583/sv.14.1.04

Graph Visualization in the Development of the Knowledge

Testing Program on Graph Theory

T.M. Kuzmina1, O.A. Vetrova2

A.N. Kosygin RSPU (Technologies. Design. Art)

1 ORCID: 0000-0001-5872-8107, kuzmina_t_m@mail.ru

2 ORCID: 0000-0001-6935-0787, ve-olga@rambler.ru

Abstract
The article considers an interdisciplinary task that combines pedagogical aspects and

visualization issues. Since graph models have become widespread, the study of graph theory
in universities has become a constant practice. The article deals with the development of an
application program that, on the one hand, helps to comprehend graph theory, in particular,
algorithms on graphs, and on the other hand, allows you to objectively evaluate the
knowledge gained. If we talk about testing knowledge using computers, then as a rule, we are
talking about testing. But for the verification of the knowledge of algorithms on graphs, the
tests possibilities are very limited. For example, when working with the algorithm "search in
depth" (or "search in width"), we deal with tasks that have more than a hundred (!) positive
responses. In other tasks, the number of correct answers is measured in units (for example,
when searching for the shortest path), but there is a high probability of guessing, finding the
answer by methods unrelated to the algorithms being studied. Of course, it is possible to
divide the initial tasks into many smaller ones that are already suitable for testing, but
knowledge of the details and features does not always indicate knowledge of the algorithm as
a whole. The article describes an application program that allows the user to perform actions
according to the selected algorithm. The developed visualization program reproduces the
result of these actions on the screen and at the same time checks the correctness of these
actions.

Keywords: Visualization of algorithms, algorithms on graphs, application program,
spanning tree, vertex traversal, shortest path, Ford-Bellman algorithm, Dijkstra algorithm,
cyclomatic matrix.

1. Introduction
The article discusses the problems of graph visualization when creating the knowledge

control application program on graph theory. Graphs are widely used in various fields of
knowledge, such as sociology, mathematical linguistics, economics, biology, medicine,
geography, programming, electronics. Now it is probably difficult to give an example of a
direction of human activity where graphs are not used at all, since they provide a convenient
language for describing various models [1-3]. All this leads to the fact that the study of graph
theory is of great importance.

Since it is believed that about 90% of all the information a person receives through vision,
and the name graph itself speaks of connections with graphics, images, work on computer
visualization of graphs appeared immediately as soon as progress in the development of
hardware made it possible to make the graphical interface and computer graphics convenient
for a person. Note that not all tasks for computer visualization of graphs turned out to be
simple and unambiguous. Especially difficult problems arise when visualizing large graphs
[1,2,4,5,6,7].

https://doi.org/10.26583/sv.14.1.04
mailto:kuzmina_t_m@mail.ru
mailto:ve-olga@rambler.ru

When studying graph theory in the course of discrete mathematics, working with large
graphs is not required, demonstration of drawings of graphs containing no more than 2 dozen
vertices and slightly more edges does not cause difficulties and is well perceived by students.
Moreover, in many cases it is possible to limit ourselves to considering planar graphs. But
everything changes when it comes to algorithms on graphs. When studying algorithms on
graphs, static images are clearly not enough. Graph algorithms often have a complex
structure, a large number of steps and condition checks. For a quick understanding of such an
algorithm, just to read its description and view a static diagram, even a very detailed one is
not enough. It is desirable to be able to trace the stages of graph processing by the selected
algorithm.

To solve the described problems in the study of graph theory, the authors formulated an
interdisciplinary task that combines pedagogical aspects and visualization issues. From the
point of view of teaching, it is important to take into account the sequence of presentation of
the material as its complexity increases. At the same time, this sequence should determine
the principle of creating an application program and highlight the most important aspects of
visualization of methodological developments. For visualization, you can use techniques of
various color solutions, notation, complex images of actions on graphs, interactivity. The
principles of object-oriented programming were chosen as a software solution for the
implementation of techniques of various color solutions, designations, complex images of
actions on graphs, interactivity. In the presented knowledge verification application program,
for example, classes "Graph", "Graph vertex", "Graph Edge" are created. Techniques of color
solutions, various designations, actions on graphs, interactivity are defined as methods of
these classes. The program was developed in the Microsoft Visual Studio environment in C#.

To do this, many authors create animations of these algorithms [8-11], but for a faster and
deeper study of the issue, the possibility of conducting independent tests, i.e. performing
actions according to the chosen algorithm, is useful. Of course, the correctness of actions
should be checked. In the classroom, the teacher is engaged in checking, but it can be
transferred to a computer, which is important for self-study or distance education. Moreover,
it is important to check not only the completed work, but also intermediate solutions.
Working with the program should be interactive. And to ensure successful interactive work,
we will need a lot of designations and the use of various color solutions. The program should
provide the user with the opportunity to perform various actions that are determined by the
selected algorithm, while the picture on the screen should change according to the actions
performed and be understandable to the user. On the one hand, such a program is useful
when studying algorithms, and on the other hand, it can be used to evaluate knowledge [12-
14].

Therefore, the task was set to create an application program for testing knowledge in
graph theory, which on the one hand will be useful to students when studying algorithms due
to their visualization, and on the other hand it can be used by a teacher to assess knowledge
[12-14]. The development of such a program will contribute to the formation of
methodological and software tools that allow students to perceive information efficiently and
effectively in the learning process on the basis of an interactive component, and the teacher
can quickly assess the acquired knowledge.

2.1. Visualization of actions according to the algorithms "search in
width" and "search in depth"

The algorithms "search in width" and "search in depth" are quite simple for visualization.
Only two actions can be performed with the selected vertex: either put it in an auxiliary object
(stack or queue), or put it in the traversal list, the student uses the switches to determine
which actions he wants to perform at a particular time and selects the vertex by clicking it
(see Figure 1). Since a vertex, once in an auxiliary object (stack or queue), must be marked,

this label is depicted as the color of the vertex in a paler color. At the moment of selecting a
vertex, it is colored red, regardless of the operation that will be performed.

Figure 1. Using the "search in width" algorithm, a graph traversal list is generated. At the step

under consideration, the selected vertex "h" is placed in the traversal list.

In case of an error the program outputs a message and counts errors. Since in such work

mistakes can be made not only from ignorance of the algorithm, but also from excitement or
inattention, the student is allowed to make 3 mistakes. If a student makes 4 mistakes, then
his work is reset to zero and he has to do the task again on the same graph. The student works
with the same graph, but when the program starts, this graph is selected using a random
number generator from a list of pre-prepared graphs. In the previously developed program
[11], random generation of the graph itself was used, but later we came to the conclusion that
it is better to use pre-prepared variants [12], and only give the random process the choice of
one of them. To create variants of tasks, a special editor has been developed that allows you to
build graphs of the required level of complexity. If a weighted graph is considered, then the
weights of the edges are determined randomly each time the program is run.

2.2. Visualization of the actions of shortest path search algorithms
The knowledge testing program implements tasks on two algorithms for finding the

shortest path - the Ford-Bellman algorithm and the Dijkstra algorithm. The first algorithm
consists of two stages: the stage of calculating indexes and the stage of constructing the
shortest path. Therefore, first the program suggests calculating the indices of the vertices (see
Figure 2). In order to record the index of the vertex, the student selects the vertex itself, it is
painted in red, and in the lower right corner of the form an input field appears in which the
calculated index can be written, and the "Save" button, clicking on which the student will
associate the entered value with the selected vertex.

Figure 2. The Ford-Bellman algorithm. The currently selected vertex is indicated in red, it is

its index that is adjusted in the input field located in the lower right part of the window.

After calculating the indices of all the vertices of the graph, the student will click the

"Complete index calculation" button. If there are errors in the calculated indexes, the
program will ask if the student wants to find them and fix them himself. The student can
agree and correct the errors, and send the solution for review again. If the student refuses to
look for errors, the program will display an analysis of these errors and the student will not be
able to correct them. If the errors do not concern the shortest path, then the program will
allow you to continue working and build one of the shortest paths. Since the error analysis is
displayed on the screen (Figure 3), the teacher can evaluate the work in full.

For example, in Figure 3, the work is done, but with errors. To display the results of error
analysis, the vertices of the graph were numbered, the vertex numbers are shown in white on
an orange background, the errors themselves are listed in the lower left corner of the window.
The shortest path is constructed correctly, the edges included in this path are colored orange.

Figure 3. Ford-Bellman algorithm: completion of work in which uncritical errors were made.

If the incorrect indexes lie on the shortest path, then it is impossible to continue the work,

and the student will have to do it again.
In Dijkstra's algorithm, it is also necessary to calculate vertex indexes, but in this

algorithm the procedure is more complicated, a vertex can be traversed, active, highlighted,
or not examined at all. And there are not two, but three action mode switches on the form. If
we analyze the situation in Figure 4, we will see that the purple color shows passed vertices.
One of the passed vertices is active, it is marked with a blue frame. The currently selected

vertex is drawn in red color, the index of the red vertex is being adjusted in the input field
located in the lower right part of the window. The remaining vertices are colored orange so
far, as they have not been considered yet.

Figure 4. Dijkstra's algorithm.

Each completed action of the student is checked, errors are reported, and counted. Just

like when checking bypass algorithms, it is allowed to make no more than 3 errors. On the
fourth error, all actions are reset to zero, and the student begins to do the work again.

Figure 5. Dijkstra's algorithm. The work is almost complete, but because of the fourth

error, we will have to start all over again.

Such "rollbacks" (see Figure 5) mobilize students, they are excited, and desire to beat the

program. Moreover, the program makes it possible to view descriptions of all the algorithms
under consideration.

2.3. Coloring edges of graphs

When constructing spanning trees and cycles, edge coloring is used, in some cases partial
coloring is used. For example, when constructing a minimum weight spanning tree, if the
user has made a mistake, then he is given the opportunity to look at one of the correct answer
options. In order for the student to compare this tree with his own, there is a viewing mode
with half-colored edges (see Figure 6). In Figure 6 chords are colored black, the edges of the
spanning tree are yellow.

Figure 6. Finding the minimum weight spanning tree. The student made a mistake and was

asked to look at one of the correct answers. The tree is painted green. In points a) and b)
there are different types of edge painting.

Partial coloring is also used when working with cycles. For example, when using the cycle

image, it is necessary to find the basic cycles into which the original one is decomposed. Since
it is important to know which chords are included in the original cycle to solve this problem,
partial painting of the edges included in it is used. If necessary, you can also enable full
coloring by raising the checkbox "full painting of the edges of the cycle", in this case it is more
difficult to find the necessary chords, but the cycle itself is better viewed. Since the cycle is
selected (of course, randomly) in such a way that it can be represented as the sum of 2 or 3
basic cycles, then there are three drop-down lists on the form, each of which contains the
names of all basic cycles. To compile the formula, you need to choose the names of the terms
of the cycles.

Figure 7. Given a cycle, it is necessary to find the basic cycles that define it. The edges of the

cycle are partially colored in red. Partial painting can be replaced with a full one.

Figure 7 shows one of the cyclomatic tasks. In this case, not its weight is printed next to
the edge, but its number, which is then used in the cyclomatic matrix. The program offers
several graph theory problems related to topics related to cycles.

All these tasks are connected by one goal – the construction of a basic cyclomatic matrix
and its use. Therefore, the work is based on the following plan:

1. Defining a cycle using a vector consisting of zeros and ones.
 a. Construct a cycle according to a given vector.
 b. Construct a vector according to a given cycle.
2. The basic system of vectors
 a. Building a spanning tree.
 b. Definition of a cyclomatic number.
 c. Construction of basic cycles included in the system defined by the constructed

spanning tree.
3. Decomposition of an arbitrary cycle into basic cycles.
 a. Two or three basic cycles are given (their names are indicated, which are used in

the basic cyclomatic matrix) it is necessary to build a cycle equal to the sum (addition modulo
2 is considered) of these cycles.

 b. Given a cycle (see Figure 7), it is necessary to find the basic cycles into which it
decomposes. The names of the cycles into which the source is decomposed can be found in
the drop-down lists.

Since the program performs various types of checks at each step, it counts errors and
eventually prints their number.

Conclusion
In the proposed article, the interdisciplinary task was considered, which is implemented

in the form of the application program [12] used in the study of the discipline "discrete
mathematics". The considered computer program has proven itself well in distance learning,
in addition, and in full-time classes, it diversifies the learning process, making it more
entertaining, but no less informative. Despite the fact that many conventions are used when
implementing various situations on the screen, students quickly understand them and use
them with confidence.

The novelty of our research lies in the fact that an interactive computer program has been
developed using graph visualization, which helps to study algorithms such as "breadth
search", "depth search", the Ford-Bellman algorithm (shortest path search), Dijkstra
algorithm (shortest path search), the algorithm for finding the spanning tree of the least
weight, Terry's algorithm and the rules for constructing a cyclomatic matrix. When
introducing this program into the educational process, it was noted that the learning rate has
increased. Before using the developed program to study algorithms for finding shortest paths,
2 practical classes were required, one lesson for each algorithm. After the introduction of the
program into the educational process, it took only one lesson to study both algorithms, while
the teacher did not take stacks of sheets of paper with him for verification. At the exam,
students' answers to questions and tasks on algorithms became more confident, and 2
additional topics that previously belonged to electives were transferred to the main program
of the discipline.

References
1. Kas'janov, V. N., Evstigneev, V. A. Grafy v programmirovanii: obrabotka, vizualizacija

i primenenie. – SPb.: BHV-Peterburg, 2003. – 1104 c. – 3000 jekz. – ISBN 5-94157-184-4 [in
Russian].

2. Kas'janov V.N., Kas'janova E.V. Vizualizacija informacii na osnove grafovyh modelej
// Nauchnaja vizualizacija. - 2014.- Tom. 6, N 1. - S. 31 – 50 [in Russian].

3. Ovchinnikov V.A. Grafy v zadachah analiza i sinteza struktur slozhnyh sistem. -
Moskva, 2014 [in Russian].

4. Lisitsyn I.A., Kasyanov V.N. Higres – Visualization system for clustered graphs and
graph algorithms // Proc. of Graph Drawing 99. – Lect. Notes in Comput. Sci. – 1999. – Vol.
1731. – P. 82–89.

5. Kas'janov V.N., Zolotuhin T.A. Visual Graph - sistema dlja vizualizacii slozhno
strukturirovannoj informacii bol'shogo ob#ema na osnove grafovyh modelej // Nauchnaja
vizualizacija. - 2015. - Tom. 7, N 4.- S. 44 – 59 [in Russian].

6. Kasyanov V.N., Kasyanova E.V. Graph- and cloud-based tools for computer science
education // Lecture Notes of Computer Science. - Springer, 2015. - Vol. 9395. - pp. 41-54.

7. Demetrescu C., Finocchi I., Stasko J. T., Specifying Algorithm Visualizations:
Interesting Events or State Mapping? // In Proc. of Dagstuhl Seminar on Software
Visualization – Lect. Notes in Comput. Sci. – 2001. – P. 16–30.

8. Gordeev D.S., Obzor tehnik vizualizacii algoritmov na grafah. // Nauchnaja
vizualizacija. 2018. T. 10. № 1. S. 18-48 [in Russian].

9. Karpovich S.E., Dajnjak I.V., Baev V.S., Razrabotka animacionnyh modelej dlja
avtomatizirovannoj obuchajushhej sistemy. //Innovacionnye obrazovatel'nye tehnologii.
2014. № 2 (38). S. 18-24 [in Russian].

10. Romanov E.L., Romanenko T.A. Tehnologija proektirovanija vizualizatorov
algoritmov. //Sbornik nauchnyh trudov Novosibirskogo gosudarstvennogo tehnicheskogo
universiteta. 2020. № 4 (99). S. 59-70 [in Russian].

11. Kuz'mina T.M. Programma «Jelektronnyj uchebnik po teorii grafov»., //Svidetel'stvo
ob oficial'noj registracii programmy dlja JeVM. №2003611422. Zajavka № 2003610962 ot
29.04.2003 [in Russian].

12. Kuz'mina T.M., Programma proverki znanij algoritmov na grafah., //Svidetel'stvo o
registracii programmy dlja JeVM RU 2018666894, 24.12.2018. Zajavka № 2018664516 ot
17.12.2018 [in Russian].

13. Kuz'mina T.M., Vetrova O.A., Ispol'zovanie komp'juternoj programmy "algoritmy na
grafah" v uchebnom processe., Dizajn i tehnologii. 2019. № 70 (112). S. 135-139 [in Russian].

14. Kuz'mina T.M., Vetrova O.A., Avtomaticheskaja proverka znanij pri izuchenii
algoritmov na grafah., Dizajn i tehnologii. 2018. № 65 (107). S. 136-140 [in Russian].

	1. Introduction
	2.1. Visualization of actions according to the algorithms "search in width" and "search in depth"
	2.2. Visualization of the actions of shortest path search algorithms
	2.3. Coloring edges of graphs

	Conclusion
	References

